183.17.230.* 2020-05-13 13:15:47 |
越來越多的應(yīng)用涉及到大數(shù)據(jù)。這些大數(shù)據(jù)的數(shù)量、速度、多樣性等屬性顯示了大數(shù)據(jù)的復(fù)雜性。因此,大數(shù)據(jù)的分析方法在大數(shù)據(jù)領(lǐng)域尤為重要,這可以說是決定最終信息是否有價(jià)值的決定性因素。
大數(shù)據(jù)常用的分析方法
1.可視化分析
大數(shù)據(jù)分析的使用者有大數(shù)據(jù)分析專家,同時(shí)還有普通用戶,但是他們二者對于大數(shù)據(jù)分析最基本的要求就是可視化分析,因?yàn)榭梢暬治瞿軌蛑庇^的呈現(xiàn)大數(shù)據(jù)特點(diǎn),同時(shí)能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
2.數(shù)據(jù)挖掘算法
大數(shù)據(jù)分析的理論核心就是數(shù)據(jù)挖掘算法,各種數(shù)據(jù)挖掘的算法基于不同的數(shù)據(jù)類型和格式才能更加科學(xué)的呈現(xiàn)出數(shù)據(jù)本身具備的特點(diǎn),也正是因?yàn)檫@些被全世界統(tǒng)計(jì)學(xué)家所公認(rèn)的各種統(tǒng)計(jì)方法(可以稱之為真理)才能深入數(shù)據(jù)內(nèi)部,挖掘出公認(rèn)的價(jià)值。另外一個(gè)方面也是因?yàn)橛羞@些數(shù)據(jù)挖掘的算法才能更快速的處理大數(shù)據(jù),如果一個(gè)算法得花上好幾年才能得出結(jié)論,那大數(shù)據(jù)的價(jià)值也就無從說起了。
3.預(yù)測性分析
大數(shù)據(jù)分析最終要的應(yīng)用領(lǐng)域之一就是預(yù)測性分析,從大數(shù)據(jù)中挖掘出特點(diǎn),通過科學(xué)的建立模型,之后便可以通過模型帶入新的數(shù)據(jù),從而預(yù)測未來的數(shù)據(jù)。
4.語義引擎
非結(jié)構(gòu)化數(shù)據(jù)的多元化給數(shù)據(jù)分析帶來新的挑戰(zhàn),我們需要一套工具系統(tǒng)的去分析,提煉數(shù)據(jù)。語義引擎需要設(shè)計(jì)到有足夠的人工智能以足以從數(shù)據(jù)中主動(dòng)地提取信息。
5.數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理。大數(shù)據(jù)分析離不開數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理,高質(zhì)量的數(shù)據(jù)和**的數(shù)據(jù)管理,無論是在學(xué)術(shù)研究還是在商業(yè)應(yīng)用領(lǐng)域,都能夠保證分析結(jié)果的真實(shí)和有價(jià)值。
大數(shù)據(jù)分析的基礎(chǔ)就是以上五個(gè)方面,當(dāng)然更加深入大數(shù)據(jù)分析的話,還有很多很多更加有特點(diǎn)的、更加深入的、更加專業(yè)的大數(shù)據(jù)分析方法。
大數(shù)據(jù)的技術(shù)
數(shù)據(jù)采集:ETL工具負(fù)責(zé)將分布的、異構(gòu)數(shù)據(jù)源中的數(shù)據(jù)如關(guān)系數(shù)據(jù)、平面數(shù)據(jù)文件等抽取到臨時(shí)中間層后進(jìn)行清洗、轉(zhuǎn)換、集成,**加載到數(shù)據(jù)倉庫或數(shù)據(jù)集市中,成為聯(lián)機(jī)分析處理、數(shù)據(jù)挖掘的基礎(chǔ)。
數(shù)據(jù)存。宏P(guān)系數(shù)據(jù)庫、NOSQL、SQL等。
基礎(chǔ)架構(gòu):云存儲、分布式文件存儲等。
數(shù)據(jù)處理:自然語言處理(NLP,Natural Language Processing)是研究人與計(jì)算機(jī)交互的語言問題的一門學(xué)科。處理自然語言的關(guān)鍵是要讓計(jì)算機(jī)”理解”自然語言,所以自然語言處理又叫做自然語言理解也稱為計(jì)算語言學(xué)。一方面它是語言信息處理的一個(gè)分支,另一方面它是人工智能的核心課題之一。
統(tǒng)計(jì)分析:假設(shè)檢驗(yàn)、顯著性檢驗(yàn)、差異分析、相關(guān)分析、T檢驗(yàn)、方差分析、卡方分析、偏相關(guān)分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預(yù)測與殘差分析、嶺回歸、logistic回歸分析、曲線估計(jì)、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應(yīng)分析、多元對應(yīng)分析(**尺度分析)、bootstrap技術(shù)等等。
數(shù)據(jù)挖掘:分類(Classification)、估計(jì)(Estimation)、預(yù)測(Prediction)、相關(guān)性分組或關(guān)聯(lián)規(guī)則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復(fù)雜數(shù)據(jù)類型挖掘(Text,Web,圖形圖像,視頻,音頻等)
大數(shù)據(jù)分析技術(shù)與方法有哪些.中琛魔方大數(shù)據(jù)分析平臺(www.zcmorefun.com)表示大數(shù)據(jù)時(shí)代對人類的數(shù)據(jù)駕馭能力提出了新的挑戰(zhàn),也為人們獲得更為深刻、**的洞察能力提供了****的空間;ヂ(lián)網(wǎng)時(shí)代的數(shù)據(jù)正在迅速膨脹,它決定著組織的未來發(fā)展,隨著時(shí)間的推移,人們將越來越意識到數(shù)據(jù)對組織的重要性。 |